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Identification of discrete concentration graph
models with one hidden binary variable
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Conditions are presented for different types of identifiability of discrete variable models generated over
an undirected graph in which one node represents a binary hidden variable. These models can be seen as
extensions of the latent class model to allow for conditional associations between the observable random
variables. Since local identification corresponds to full rank of the parametrization map, we establish a
necessary and sufficient condition for the rank to be full everywhere in the parameter space. The condition
is based on the topology of the undirected graph associated to the model. For non-full rank models, the
obtained characterization allows us to find the subset of the parameter space where the identifiability breaks
down.
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1. Introduction

Statistical models with latent variables have become important tools in applied studies, as they
allow to include the effects of unobservable variables over the observable ones and to correct for
the possible distortion induced by heterogeneity in the data. However, it is now widely recog-
nized that when some of the variables are never observed, standard statistical procedures may be
problematic, as non-identifiability of the parameters and local maxima in the likelihood function
can occur.

In this paper, we focus on local identifiability of undirected graphical models for discrete vari-
ables with one binary hidden, or latent, variable. Note that models with a binary latent variable
arise in several studies, as those concerning the absence/presence of a particular trait. In a recent
paper by Allman et al. [1], a weaker form than local identification has been treated and named
generic identification in which case a set of non-identifiable parameters may be present which
resides in a subset of null measure. To find the explicit expression of such subset is important,
since standard statistical procedures may fail if the estimates of the parameters are close to the
singular locus; see, for example, [3].

Since, by the inverse function theorem, local identifiability corresponds to full rank of the
parametrization map, we establish a necessary and sufficient condition for the rank to be full ev-
erywhere in the parameter space. The condition is based on the topology of the undirected graph
associated to the model. This contribution is similar to what is done in [4] for linear structural
equation models. For non-full rank models, the obtained characterization allows us to find the
subset where the identifiability breaks down.
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In Section 2, the class of models is presented together with the notion of identification. The
main theorem is in Section 3. In Section 4, we present the derivations that lead to the main result.
Section 5 contains concluding remarks.

2. Discrete undirected graphical model

Let GK = (K,E) be an undirected graph with node set K = {0,1, . . . , n} and edge set E =
{(i, j)} whenever vertices i and j are adjacent in GK , 0 ≤ i < j ≤ n. To each node, v is asso-
ciated a discrete random variable Av with finitely many levels. A discrete undirected graphical
model is a family of joint distributions of the variables Av , v ∈ K , satisfying the Markov prop-
erty with respect to GK , namely that the joint distribution of the random variables factorizes
according to GK ; see [7], Chapter 3, for definitions and concepts.

Let A0 be a binary latent variable and O = {1, . . . , n} be the set of nodes associated to ob-
servable random variables. In the following, let GB be the (sub)graph GB = (B,EB) of GK

induced by B ⊆ K . We denote with ḠB = (B, ĒB) the complementary graph of the (sub)graph
GB , where ĒB is the edge set formed by the pairs (i, j) /∈ EB with i, j ∈ B (i �= j ). In Fig-
ure 1(b) and (c), the graph GO and its complementary graph ḠO associated to the graph GK of
Figure 1(a) is presented.

Let lv denote the number of levels of Av , v ∈ K , and let l = ∏n
v=1 lv . Without loss of general-

ity, we assume that the variable Av takes value in {0, . . . , lv − 1}. We consider the multidimen-
sional contingency table obtained by the cross classification of N objects according to Av . Let
X be the 2l × 1 vector of entries of the contingency table, stacked in a way that the levels of A0
are changing slowest.

Data for contingency tables can be collected under various sampling schemes; see [7], Chap-
ter 4. We assume for now that the elements of X are independent Poisson random variables with
E(X) = μX .

Let logμX = Zβ , where β is a p-dimensional vector of unknown parameters; Z is a 2l × p

design matrix defined in a way that the joint distribution of Av , v ∈ K , factorizes according
to GK and such that the model is graphical. We assume β �= 0 and let � be parameter space,
� = (R \ 0)p . This implies that for each complete subgraph GS = (S,ES), S ⊆ K , there is a
non-zero interaction term of order |S| among the variables Av , v ∈ S.

Figure 1. Example of (a) a GK graph and the corresponding graphs (b) GO and (c) ḠO .
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We adopt the corner point parametrization that takes as first level the cell with Av = 0, for all
v ∈ K , see, for example, [2]. We denote by Y the l × 1 vector of the counts in the marginal table,
obtained by the cross classification of the N objects according to the observed variables only. The
vector Y is stacked in a way that Y = LX, with L = (1,1)⊗ el , where el is the identity matrix of
dimension l. By construction, the elements of Y are independent Poisson random variables with
μY = LeZβ .

If we denote with ψ the parametrization map from the natural parameters μY to the new pa-
rameters β , global identifiability, also known as as strict identifiability, corresponds to injectivity
of ψ , while, when ψ is polynomial, local identifiability corresponds to ψ being finite-to-one.
As argued in [1], there may be models such that the parametrization mapping is finite-to-one
almost everywhere (i.e., everywhere except in a subset of null measure). In this case, we speak
of generically identifiable models.

By the inverse function theorem, a model is locally identified if the rank of the transformation
from the natural parameters μY to the new parameters β is full everywhere in the parameter
space �. This is equivalent to the rank of the following derivative matrix

D(β)T = ∂μT
Y

∂β
= ∂(LeZβ)T

∂β
= (LRZ)T (1)

being full, where R = diag(μX). Note that the (i, j)th element of D(β) is the partial derivative
of the ith component of μY with respect to βj the j th element of β .

The multinomial case can be addressed in an analogous way to the Poisson, after noting that
the rank of the matrix D(β) and the rank of its submatrix D0(β) obtained by deleting the last
column are the same.

Note that, by setting tj = eβj for any parameter βj , the parametrization map turns into a
polynomial one. This implies, see, for example, [9], Chapter 1, that if there exists a point in the
parameter space of tj , and therefore in �, at which the Jacobian has full rank, then the rank is full
almost everywhere. Therefore, either there is no point in the parameter space at which the rank is
full, or the rank is not full in a subset of null measure. The object of this paper is (a) to establish a
necessary and sufficient condition for the rank of D(β) to be full everywhere and (b) to provide
expressions of the subset of null measure where identifiability breaks down.

3. Main results

The following definition introduces a graphical notion that is recalled in the main theorem.

Definition 1 (Generalized identifying sequence for a clique). A generalized identifying se-
quence for a clique C0 of GO with |C0| > 1 is a sequence {Ss}qs=0 in GO of complete subgraphs
such that:

(a) for s ∈ {0, . . . , q − 1} and for all i ∈ Ss there exists a j ∈ Ss+1 such that (i, j) ∈ Ē;
(b) |Ss+1| ≤ |Ss | for s ∈ {0, . . . , q − 1}, S0 = C0 and |Sq | = 1.

Example 1. Consider the model with graphs GK , GO and ḠO as in Figure 1(a)–(c). The clique
of GO are {1,2}, {2,3}, {3,4}, {4,5}. For any clique, there is a generalized identifying sequence.
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For C0 = {1,2}, S1 = {4} satisfies the assumptions of Definition 1. For C0 = {2,3}, S1 = {5}
satisfies the same assumptions. The same holds for C0 = {3,4} and C0 = {4,5}, since for both
S1 = {1} is the required set.

The following theorem characterizes discrete concentration graph models with one unobserved
binary node that are locally identified everywhere in the parameter space �. The proof is in
Appendix B, and uses the results for binary models developed in Section 4.

Theorem 1. Let β be the vector of parameters of an undirected graphical model GK over the
discrete variables (A0,A1, . . . ,An), with A0 latent binary variable. Suppose that (0, u) /∈ E, for
any u ∈ T1 ⊆ (K \ {0}), and (0, u) ∈ E, for all u ∈ S = K \ {0 ∪ T1}. A necessary and sufficient
condition for D(β) to be full rank everywhere in the parameter space is that:

(i) ḠS contains at least one m-clique C, with m ≥ 3;
(ii) for each clique C0 in GS with |C0| > 1 there exists a generalized identifying sequence Ss

with all Ss ⊆ S.

The graphical model over the concentration graph as in Figure 1(a) is locally identified every-
where in the parameter space, as condition (i) and (ii) of Theorem 1 are satisfied. This can be
checked by noting that the corresponding ḠS , S = O , contains the 3-clique {1,3,5} and for each
clique C0 in GO , |C0| > 1, there is a generalized identifying sequence as shown in Example 1.

Violation of assumption (i) of Theorem 1 implies that GS either is composed by two and only
two complete components that are not connected or is composed by one connected component.
In the first case, a graphical model is not even generically identified, i.e. there is no point in
the parameter space such that the parametrization map is full-rank. To see this let T1 be as in
Theorem 1 and pose first T1 = ∅. Since every clique of GS corresponds to a saturated model over
the distribution of the observable random variables conditionally on the latent one, the model is
observationally equivalent to a binary latent class model with two observable random variables
X∗

j , j ∈ {1,2}, constructed by clumping the variables in the clique j into a single one. From [5],
without further assumptions, the model is then rank deficient everywhere in the parameter space.
Extension to T1 �= ∅ follows by noting that the above considerations hold conditionally on the
variables in T1. The model associated to Figure 2(b) is an example.

Figure 2. Two examples of GK graphs corresponding to (a) an identified and (b) a not identified model.
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Figure 3. The graphs (a) GO and (b) ḠO corresponding to a model with S = O locally identified almost
everywhere.

All other instances of violation of the assumptions of Theorem 1 lead to models that are lo-
cally identified almost everywhere (see Section 4 and Appendix A). The next example shows
an instance of model which is locally identified almost everywhere as condition (ii) of Theo-
rem 1 fails. The subset where identifiability breaks down is also presented. It can be determined
throughout the derivations in Section 4.

Example 2. With reference to model associated to the graph in Figure 3, let S = O . The ḠO

graph contains at least one 3-clique, for example, {1,2,3}. The clique C0 = {2,5} has S1 = {6}
as generalized identifying sequence, and therefore the corresponding interaction term does not
generate non-identifiability in the parameter space. For symmetry also C0 = {1,6} and C0 =
{3,4}. For C0 = {1,4,5}, however, there is no identifying sequence, since bdḠO (C0) = {2,3,6}
is complete in ḠO . The subset where identifiability breaks down can be determined from (A.2)
in Appendix A, which also makes clear that it is a subspace. For the binary case:⎧⎨

⎩
β{0,2} + β{0,2,5} = 0,

β{0,3} + β{0,3,4} = 0,

β{0,6} + β{0,1,6} = 0.

The rank of D(β) is equal to 28 everywhere except in the above subspace, where it becomes
equal to 27.

When maximum likelihood estimates are close to the subspace where identifiability fails, stan-
dard asymptotic results may no longer hold. As an instance, tools for model selection, such as
likelihood ratio test, may be inappropriate, see [3]. Notice further that the model with correspond-
ing GO graph obtained by adding the edge (2,6) in Figure 3(a) is locally identified everywhere
in �. Therefore, models obtained by deleting edges between the observed variables of locally
identified models may not be locally identified everywhere in the parameter space.
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4. Local identification with one binary variable

In this section, we consider graphical models such that all n observed variables are connected
to the latent one, that is, (u,0) ∈ E, for any observed variable u ∈ O . We first focus on binary
variables only. The assumption will be relaxed in Theorem 3. Consider I ⊆ O , let μI be the
element of μY associated to the entry of the contingency table having 1 for all variables in I and
0 for the others. Let dI be the row of the matrix D(β) corresponding to the first order partial
derivative of μI with respect of β . Note that βv , v ∈ K , represents the main effect of the random
variable Av and for each subset I ⊆ O such that |I | > 1, βI is the interaction term between
the variables in I . With β{0,I }, we denote the interaction term between the variables in {0, I }.
Moreover, β∅ = μ is the general mean. With reference to the model with concentration graph as
in Figure 2(a), let I = {1,2}. Then μI is the expected value of the ordered entry (1,1,0,0), dI

is the row of D(β) corresponding to the partial derivative of μI with respect to β and βI is the
term expressing the second order interaction between A1 and A2.

With this notation, to each generic i-row of D(β), we can associate the set I , I ⊆ O , of the
observed variables taking value one in row i. Each generic column j corresponds to the partial
derivatives of μY with respect to an element of β , which we denote with βJ . Note that both I and
J could be the empty set. It is then easy to see that if J �⊆ I , the generic ij -element of D(β) is 0.
If J ⊆ I , the ij -element of D(β) is equal to eZiβ when 0 ∈ J and to eZiβ + eZi+lβ otherwise,
where Zr be the r th row of Z.

Furthermore, let S be a complete subgraph of GO and S′ ⊃ S. For dS and dS′ and βS and
β{0,S} the 2 × 2 square sub-matrix of D(β) has the following structure:

[
ea(1 + eb) ea+b

ea+a′
(1 + eb+b′

) ea+a′+b+b′
]

(2)

with

a = μ +
∑
I⊆S

βI , b = β0 +
∑
I⊆S

β{0,I }, a′ =
∑

{I⊆S′,I �⊆S}
δ(I )βI

and

b′ =
∑

{I⊆S′,I �⊆S}
δ(I )β{0,I },

where δ(I ) = 1 if I is complete on GO and 0 otherwise. Matrix (2) is not full rank if and only if
b′ = 0.

We first consider the binary latent class model, that is, a model such that the joint distribution
of the random variables factorizes as follows:

∏
v∈O P (Av | A0)P (A0), see [6,8]. From the as-

sumption β �= 0, no further independencies than the ones implied by the above factorization are
encoded in the binary latent class model.

Note that two models with a relabelling of the latent classes, together with a change of the sign
of the β{0,i}, generate the same marginal distribution over the observable variables. This issue is
known as “label swapping”.
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Proposition 1. A binary latent class model is strictly identifiable, up to label swapping, if and
only if n ≥ 3.

Proof. Sufficiency follows (a) for n = 3 from [1], Corollary 2; (b) for n > 3 from the assumption
β �= 0. Necessity follows by the fact that if n < 3 the model has more parameters than information
in the marginal distribution of the observable random variables. �

We now remove the assumption that the observable random variables are independent con-
ditionally on the latent one to include a more general class of graphical models GK over the
variables Av , v ∈ K . We first consider graphical models such that (0, u) ∈ E for all u ∈ O and
the complementary graphs ḠO are connected and have at least an m-clique C with m ≥ 3.

Proposition 2. Let GK be an undirected graphical model over the binary variables (A0,A1, . . . ,

An) with A0 latent and with (0, u) ∈ E, for all u ∈ O . Assume that in ḠO there exists an m-clique
C, m ≥ 3. Let C̄ = {O \ C} and M1 be the sub-matrix of D(β) formed by the rows di and d{i,j},
with i ∈ C̄ and j such that (i, j) ∈ Ē, and by the columns βi and β{0,i}. Then M1 has rank equal
to 2|C̄| everywhere in the parameter space if and only if ḠO is connected.

Proof. If ḠO is connected, there exists an ordering (see the algorithm in Appendix A) of the
nodes of C̄ such that for any i, 1 ≤ i < |C̄|, the node j = i + 1 is such that (i, j) ∈ Ē; for
i = |C̄|, j ∈ C. Such ordering generates |C̄| distinct pairs (i, i + 1). Let M∗

1 be the sub-matrix
of M1 made up of the rows di , d{i,i+1}. Then M∗

1 is a 2|C̄|-square lower-block triangular matrix
with blocks Mi associated to row di , d{i,i+1}, and columns βi and β{0,i}. The structure of Mi is
as (2) with a = μ + βi , b = β0 + β{0,i}, a′ = βj and b′ = β{0,j} since by construction (i, j) ∈ Ē.
As β{0,j} �= 0 by assumption, it follows that M∗

1 is full rank and so is M1.

Conversely, if ḠO is not connected, then ḠO has two or more connected components. Let
Ḡ1 = (V1,E1) and Ḡ2 = (V2,E2) be two of them. Consider any pair of complete sets I1 ⊆ V1

and I2 ⊆ V2 (they could be a singleton) in GO . Note that (u, j) ∈ E for any u ∈ I1 and j ∈ I2.
Therefore, I1 ∪ I2 is a complete subset in GO . Let S = I1 and S′ be any (complete) subset of
I1 ∪ I2 such that S ⊂ S′. From (2), any matrix formed by the row dS and a row dS′ , with S′ as
above, and by the columns βS and β{0,S} is not full-rank for β such that

∑
{I⊆S′,I �⊆S}

β{0,I } = 0. (3)

Then, the submatrix of M1 containing the row dS and all the above rows dS′ is not full column
rank for the above β , so M1 is also not full rank. �

Let t be the maximum order of the non-zero interaction terms among the variables in O . For
each order k, k ∈ {2, . . . , t}, of interaction between the observable random variables, let sk be the
number of interaction terms of order k. We use Ik,r to denote the set of vertices in O having a
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non-zero r th interaction term of order k, r ∈ {1, . . . , sk}. Note that, by construction, |Ik,r | > 1.
The following example clarifies the notation.

Example 3. The model with graph GK as in Figure 2(a) has maximum order t = 2 and s2 = 2
with I2,1 = {1,2}, I2,2 = {2,3}. The model with graph GK as in Figure 2(b) has maximum order
t = 3. For k = 2, s2 = 3 with I2,1 = {1,2}, I2,2 = {2,3} and I2,3 = {1,3}; for k = 3, s3 = 1 with
I3,1 = {1,2,3}. Similarly, the graph GO as in Figure 3(a) has maximum order t = 3. For k = 2,
sk = 6, with I2,1 = {1,4}, I2,2 = {1,5}, I2,3 = {1,6}, I2,4 = {2,5}, I2,5 = {3,4}, I2,6 = {4,5};
for k = 3, sk = 1, with I3,1 = {1,4,5}.

The graphical notion of identifying sequence will be used to characterize the subset where
identifiability breaks down.

Definition 2 (Identifying sequence for a complete subgraph). An identifying sequence for a

complete subgraph Ik,r of GO (with k ≥ 2) is a sequence {Is}q
′+1

s=0 of complete subgraphs, q ′ ≥ 0,
of GO such that I0 = Ik,r , Is �= Is′ (for s �= s′) with s, s′ ∈ {0, . . . , q ′ + 1} and satisfying the
following assumptions:

(a) for all s ∈ {0, . . . , q ′} and for all i ∈ Is there exists a j ∈ Is+1 such that (i, j) /∈ E;
(b) for all s ∈ {0, . . . , q ′}, |Is | = k and |Iq ′+1| < k.

An equivalent formulation of condition (a) is that for s ∈ {0, . . . , q ′} and for all i ∈ Is there
exists a j ∈ Is+1 such that i and j are connected in the complementary graph ḠO .

Remark 1. If there exists a sequence of complete subgraphs satisfying (a), but such that |Is | > k,
for some s ∈ {1, . . . , q ′}, then there exists also a sequence satisfying |Is | = k: as a matter of fact,
if for all i ∈ Is there exists a node j ∈ Is+1 such that (i, j) /∈ E, then Is+1 can be chosen in
a way that |Is+1| cannot be greater than |Is |. Therefore, if a complete subgraph Ik,r admits no
identifying sequence of complete subgraphs, then either there is no sequence of Is such that (a)
is satisfied or there is no Iq ′+1 such that |Iq ′+1| < k.

Remark 2. For any identifying sequence {Is}q
′+1

s=0 related to a complete subgraph GO , Is ∩Is+1 =
∅ holds, as if, by absurd, i ∈ Is ∩ Is+1, then (i, k) ∈ E for any k ∈ Is+1 (since Is+1 is complete
in GO ), which contradicts the assumptions.

Given an identifying sequence {Is}q
′+1

s=0 , related to a complete set Ik,r , let V ⊆ Is+1 and

IV
s =

⋂
j∈V

{i ∈ Is : (i, j) ∈ E}

be the subset of Is with nodes connected in GO to any node j belonging to V . Note that, from
Remark 2, for V = Is+1, IV

s = ∅.
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Remark 3. If there is an identifying sequence satisfying (a) but such that Is = Is′ for some
s �= s′, s < s′, then there is also a shorter identifying sequence, which is constructed by excluding
the interactions from Is+1, . . . , Is′ .

Remark 4. The fact that the assumptions (a)–(b) hold for all complete subgraphs Ik,r does not
imply that they hold also for the all complete subgraphs Ik′,v such that Ik′,v ⊃ Ik,r . The graph
in Figure 3(a) is an example, as for each complete subgraph of GO such that k = 2 there is an
identifying sequence. However, there is no identifying sequence for I3,1 = C0 = {1,4,5}, with
I3,1 ⊃ I2,1, I2,2, I2,6 (see also Examples 2 and 3).

Obviously, for a complete subgraph there may be more than one identifying sequence. The
following result shows the relationship between generalized identifying sequence for cliques and
identifying sequence for complete subsets.

Proposition 3. For any complete subgraph Ik,r (for any k) of graph GO there exists an identi-

fying sequence {Is}q
′+1

s=0 , I0 = Ik,r , if and only if for each clique C0 of GO with |C0| > 1 there
exists a generalized identifying sequence {Ss}qs=0, S0 = C0.

Proof. It is immediate to see that the existence for a complete subgraph in GO of an identify-
ing sequence implies the condition on the cliques C: it is enough for any clique C to consider
the relevant identifying sequence IC

q ′+1 and then, since IC
q ′+1 is complete, consider again the

relevant identifying sequence for IC
q ′+1 until the last term has cardinality 1. The proof of the in-

verse implication is the following. For S = C0, it is trivial. For S ⊂ C0 consider the following
restriction on the sets S0, . . . , Sq in the generalized identifying sequence for C0: let I0 = S and,
for i ∈ {1, . . . , q ′ + 1}, let Ii be the subset of nodes v ∈ Si such that there exists j ∈ Ii−1 with
(j, v) ∈ Ē and such that the cardinality of Ii is not greater than |S| (see Remark 1). The existence
of Iq ′+1 with |Iq ′+1| < |S| follows from |Sq | = 1. �

Lemma 1. Let GK be an undirected graphical model over the binary variables (A0,A1, . . . ,An)

with A0 latent and with (0, u) ∈ E, for all u ∈ O . Let Ik,r be a complete subgraph of GO with

k ≥ 2 that admits an identifying sequence {Is}q+1
0 . Then D(β) contains at least one square sub-

matrix Mk,r of order 2(q + 1) formed by the rows dIs and d{V,Is}, V ⊆ Is+1, and by the columns
associated to βIs and β{0,Is }, s ∈ {0, . . . , q}, that has full rank everywhere in the parameter space.

Conversely, if D(β) is full rank everywhere in the parameter space, then for any clique C0 of
GO with |C0| > 1 there is at least a generalized identifying sequence.

Proof. See Appendix A. �

Example 4. With reference to Figure 1, let I = {1,2}. The square sub-matrix with rows dI and
d{4,I }, and columns βI and β{0,I } is full rank, as the sequence I0 = {1,2}, I1 = {4} satisfies
the assumptions of Lemma 1. Let I = {2,3}, the square sub-matrix with rows dI and d{5,I }
and columns βI and β{0,I } is also full rank, as the sequence I0 = {2,3}, I1 = {5} satisfies the
assumptions of Lemma 1. The same holds for I = {3,4} and I = {4,5}, since for both I1 = {1}
is the required set.
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Suppose that for each fixed order k of interaction, k ∈ {2, . . . , t}, the sets Ik,r , r = 1, . . . , sk ,
satisfy the assumptions of Lemma 1. For each Ik,r then there is a full rank sub-matrix Mk,r

of D(β) with rows dIs , d{V,Is}, V ⊆ Is+1, and columns βIs and β{0,Is }, s ∈ {0, . . . , q}. We de-
note with Pk the matrix formed by all rows of D(β) and columns used to build all the matrices
Mk,r , r ∈ {1, . . . , sk}. By construction, a row, and therefore a column, cannot appear in more than
one Mk,r . Then, Pk is a sub-matrix of D(β) which is full column rank as it is block-triangular
matrix with full-rank blocks Mk,r . In fact, the matrix Pk has zero components in the columns
associated to β{Ik,r ′ } and β{0,Ik,r ′ } for r ′ �= r , so Pk is a lower block-triangular matrix with blocks
full rank everywhere in the parameter space, and is therefore full rank for all β ∈ �. The follow-
ing result then holds.

Proposition 4. Let P = [P2 | . . . | Pt ] be the sub-matrix of D(β), with Pk , k ∈ {2, . . . , t}, con-
structed as previously described. If for any clique C of GO with |C0| > 1 there is a generalized
identifying sequence, then P is full column rank everywhere in the parameter space.

Proof. From the fact that the model is graphical, P is lower block-triangular matrix, as if βI = 0
then βI ′ = 0 for all I ′ ⊃ I . Then the blocks are full column rank everywhere in the parameter
space by Lemma 1. �

We can then prove the following theorem.

Theorem 2. Let β be the vector of the parameters of an undirected graphical model GK over
the binary variables (A0,A1, . . . ,An), with A0 latent and (0, u) ∈ E, for all u ∈ O . A necessary
and sufficient condition for D(β) to be full rank everywhere in the parameter space is that:

(i) ḠO contains at least one m-clique C, with m ≥ 3;
(ii) for each clique C0 in GO with |C0| > 1 there exists a generalized identifying sequence.

Proof. See Appendix A. �

As already noticed, violation of assumption (i) of Theorem 2 implies that the graph GO is
composed either by two and only two complete components that are not connected or by one
connected component. The first case has been discussed in Section 3 and leads to models that are
not even generically identified. The second case leads to models that are locally identified almost
everywhere in �. The subset where identification breaks down is derived in Appendix A.

Violation of assumption (ii) of Theorem 2 implies that there is a subspace of null measure in
which D(β) is not full rank, which can be so determined. If there is a clique having no general-
ized identifying sequence, there is (at least) a complete set I0 in GO having no complete set I1
in GO containing nodes that are connected in ḠO to a node of I0. Then, we need to find the set
bdḠO (I0) of nodes adjacent to at least a node in I0 in the complementary graph ḠO . In this set,
find all V0 subsets that are complete in GO . The expression of the subspace may be derived by
equation (A.2) in Appendix A. This is:

β{0,V0} +
∑
I⊆I0

δ(V0, I )β{0,I,V0} = 0 for any V0 ⊆ bdḠO (I0), (4)
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Figure 4. The graph (a) GO and (b) its complementary graph ḠO of the model in Example 5.

where δ(V0, I ) = 1 if {V0, I } is complete in GO and 0 otherwise. Note that the sets that have a
non-zero contribution to

∑
I⊆I0

δ(V0, I )β{0,I,V0} are necessarily subsets of I
V0
0 sets.

Example 5. Let the cliques in the graph GO be the following C1 = {1,4,7,9},C2 = {1,4,6,9},
C3 = {1,4,6,8},C4 = {2,4,7,9},C5 = {2,4,6,9},C6 = {2,4,6,8},C7 = {1,5,7,9},C8 =
{2,5,7,9},C9 = {3,5,8},C10 = {3,6,8},C11 = {1,5,8},C12 = {2,5,8},C13 = {3,5,7}. In
Figure 4(a) and (b) the corresponding graphs GO and ḠO are represented. We can verify
from the graph ḠO that the assumptions of the Theorem 2 hold. For example, for the clique
C11 = C0 = {1,5,8} we have the generalized identifying sequence: S1 = {2,4,9}, S2 = {3}. By
considering C3 = S0 = {1,4,6,8} we have the generalized identifying sequence S1 = {3,7},
S2 = {4,6} and S3 = {5}. The corresponding graphical model is therefore locally identified ev-
erywhere in the parameter space.

Example 6. The model associated to the graphs in Figure 5 satisfies condition (i) of Theorem 2.
However, condition (ii) does not hold for {1,2,3,4}, {4,5}, {4,6}.

For C0 = {1,2,3,4} we have bdḠO (C0) = {5,6}, which is complete in ḠO . Then, the com-
plete sets V0 are {5} and {6}. From (4), V0 = {5} (V0 = {6}) gives rise to the first (second) equation
of the system below.

For C0 = {4,5}, the bdḠO (C0) = {1,2,3,6}. The sets V0 are all possible complete subsets of
{1,2,3} and {6}. From (4), the equations of the system below are formed, with the exclusion of
the first one. Analogously, for C0 = {4,6} the equations of the system below are formed, with
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Figure 5. The graphs (a) GO and (b) ḠO of Example 6.

the exclusion of the second one. So we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β{0,5} + β{0,4,5} = 0,

β{0,6} + β{0,4,6} = 0,

β{0,1} + β{0,1,4} = 0,

β{0,2} + β{0,2,4} = 0,

β{0,3} + β{0,3,4} = 0,

β{0,1,2} + β{0,1,2,4} = 0,

β{0,1,3} + β{0,1,3,4} = 0,

β{0,2,3} + β{0,2,3,4} = 0,

β{0,1,2,3} + β{0,1,2,3,4} = 0.

The rank of D(β) is equal 40 everywhere except in the subspace above. Notice that clique
C0 = {1,2,3,4} contains the following 7 complete subsets with cardinality greater than 1 hav-
ing no identifying sequence: {1,2,4}, {1,3,4}, {2,3,4}, {1,4}, {2,4}, {3,4}. For all these sets,
bdḠO (I0) = {5,6} and from (4) the first two equations of the system above are formed. From
these derivations, we can see that some intermediate situations can occur: the rank of D(β) de-
generates of 8 in the subspace formed by the first (second) equation only while it degenerates of
2 in the subspace formed by the last seven equations only. While in the subspace given from all
the above equations, D(β) degenerates to 30 due to the 9 complete subsets with no identifying
sequence (i.e., the 7 aforementioned complete subsets of {1,2,3,4} plus {4,5} and {4,6}) and to
the fact that the node 4 is not connected to the other nodes in ḠO (see (3) of Proposition 2).

We now extend the condition for local identification to more general models with observable
random variables v ∈ O with a finite number of levels lv .

Theorem 3. Let β be the vector of parameters of an undirected graphical model GK over the
discrete variables (A0,A1, . . . ,An), with A0 latent binary variable and (0, u) ∈ E, for all u ∈ O .
A necessary and sufficient condition for D(β) to be full rank everywhere in the parameter space
is that:
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(i) ḠO contains at least one m-clique C, with m ≥ 3;
(ii) for each clique C0 in GO with |C0| > 1 there exists a generalized identifying sequence.

Proof. See Appendix A. �

All models that are locally identified for the binary case are also identified for the more general
case, provided that the latent variable is binary. Note that, for models that are locally identified
everywhere except in a subspace of null measure, the equation of the subspace can be found by
making repeated use of equation (4), after noting that the parameters expressing the interaction
terms of a subset I are as many as the product of the levels

∏
v(lv − 1), v ∈ I .

Note that, for the particular case of a binary hidden variable, Theorem 3 extends the class
of (generically) identified models according to Allman et al. [1], as their identification criteria
allows for conditional independence between blocks of observable variables given the latent one
only, and therefore excludes models with GO connected. Note further that Theorem 3 implies
that only the models with connected complementary graph can be identifiable. This contrasts
with the condition of globally identifiability in graphical Gaussian models given in [10,11]. The
two conditions coincide only in the case with n = 3 or n = 4. In this second case, an identified
model (under both the discrete and Gaussian distribution) has conditional independence graph as
in Figure 2(a).

5. Concluding remarks

One of the issues in estimating graphical models with latent variables concerns identifiability. In
this paper, a characterization of locally identified undirected discrete graphical models with one
hidden binary node has been presented, through a necessary and sufficient condition which can be
checked from the associated concentration graph. Investigation on the consequences of violation
of the given condition led to distinguish between models that are locally identified everywhere
but in a subspace of null measure and models that are not locally identified. In the first case, the
derivations allow to determine the subspace of null measure where identifiability fails.

Issues of identification of all models that are obtainable as a one to one reparametrization of the
discrete undirected graphical model can be addressed using the results here presented. We also
conjecture that results on block-triangularity of the matrix D(β) can be extended to deal with
models with one discrete latent node with more than two levels. The derivations in this paper
also pave the way to graphical models with more than one hidden variable as well as directed
acyclic graphs.

Appendix A: Proofs of derivations in Section 4

Algorithm for reordering D(β)

Let U ⊆ C̄ be the set of unordered nodes. Given C, for any v node in C̄, let πv be (one of) the
shortest paths connecting v to a node in C and let λv be its length. This path exists whenever
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the graph ḠO is connected. Let ai be (one of) the farthest node among those in U ⊆ C̄ such that
λai

= maxv∈U λv . Let Wi be the ordered set of nodes in the path πi in the direction emanating
from C to ai . (The path πi may contain nodes which do not belong to U .) Denote with bi the
last node of Wi belonging either to C or to C̄ \ U .

Step 1. U ← C̄, T ← C.
Step 2. Check if U is empty, in this case C̄ is ordered; otherwise search for the ai node, with

the corresponding Wi and bi .
Step 3. Let Ji be the ordered set obtained from Wi by deleting the elements before bi and bi .
Step 4. If bi is in C, then append Ji to T as the last group of elements (so T ← {T ,Ji});

otherwise, if bi is in T \ C order Ji just after bi in T (so T ← {C, . . . , bi, Ji, . . .});
let U ← U \ Ji ; go to Step 2.

Proof of Lemma 1

We prove the sufficiency first. Consider all the sub-matrices of Mk,r . Observe that a row, and
therefore a column, cannot be chosen twice in a Mk,r matrix, as Is �= Is′ (see Remark 3). By
ordering the rows and columns according to the sequence of {Is}q+1

0 , the matrix Mk,r is seen to
be lower block triangular. The blocks are N0, . . . ,Nq where Ns is formed by the rows dIs and
d{V,Is} with V ⊂ Is+1 (from Remark 2 the intersection Is and Is+1 is empty) by the columns
associated to βIs and β{0,Is }. Therefore, Ns is as in (2).

Then, rank(Mk,r ) = ∑q

s=0 rank(Ns) and is full if and only if the blocks are full rank, that is if
the rank of each block is equal to 2.

Suppose that there is no index s such that Ns has full rank, that is, there is no V ⊆ Is+1
generating a sub-block of Ns with rank equal to 2. Then, from (2)∑

I⊆{Is∪V },I �⊆Is

δ(I )β{0,I } = 0 for all V ⊆ Is+1.

From the fact that the model is graphical, we obtain:∑
I⊆IV

s

β{0,V ,I } = 0 for all V ⊆ Is+1, (A.1)

where for V = Is+1 one has I s+1
s = ∅. This implies that β{0,V } = 0, which contradicts the as-

sumptions since Is+1 is a complete subgraph of GO . Therefore, for each s there exists a full rank
block Ns and the square sub-matrix Mk,r is full rank everywhere in the parameter space.

We now prove the necessity. Since D(β) is full rank everywhere, the sub-matrix of D(β)

formed by all rows of D(β) and by the columns βIk,r
, β{0,Ik,r } is full column rank for all β ∈ �.

Going by contradiction, suppose that there is a clique C in GO admitting no generalized iden-
tifying sequence. Then, from Proposition 3 there is a Ik,r = I0 such that there is no identifying
sequence. Then, we can suppose without loss of generality that there is no complete subgraph
I1 in GO such that for each i ∈ I0 there is j ∈ I1 with (i, j) /∈ E. Select the sub-matrix Ck,r

formed by the columns βI0 , β{0,I0} and all the rows such that these two columns have non-zero
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components, that is select all rows dV , V ⊇ I0. (Note that in all other rows the two elements are
both 0.) Denote with �k,r ⊂ � the following subspace:

β{0,V0} +
∑

I⊆I
V0
0

β{0,I,V0} = 0, (A.2)

where V0 is any complete subgraph in GO such that for each j ∈ V0 there is at least a i ∈ I0

with (i, j) ∈ E. Violation of assumption (a) of Definition 2 implies that I
V0
0 �= ∅. Then, it is easy

to verify that for β ∈ �k,r as defined by (A.2) the columns of Ck,r are linearly dependent. As a
matter of fact, every 2 × 2 sub-matrix formed by any two rows of Ck,r has the form of (2) with
b′ = 0. This contradicts the assumption that D(β) is full rank everywhere.

Suppose now the violation of assumption (b) of Definition 2, that is, that there exists a I0 = Ik,r

such that there is no sequence for I0 such that |Iq+1| < k. We can find a 2×2 full rank submatrix
of D(β) with columns associated to βIs and β{0,Is }, s ∈ {0, . . . , q}. From the previous derivations,
we should consider the rows associated to Is and VS = {Is, Is+1} (otherwise D(β) is not full rank
for β ∈ �k,s as defined by (A.2)). But, as there is no Iq+1 such that |Iq+1| < k, Iq+1 coincides
with some Is in the sequence. Therefore, we cannot find the required 2 × 2 sub-matrix with full
rank.

Proof of Theorem 2

We prove the sufficiency first. Let DC be the sub-matrix of D(β) with rows corresponding to
the cells with values zeros for all variables not in C, and columns μ,βi, β{0,i}, i ∈ C. By (i) the
graph GC corresponds to a binary latent class model and so by Proposition 1, DC is full column
rank. Let DC̄ be the sub-matrix of D(β) having rows di , d{i,j} and columns βi,β{0,i}, i ∈ C̄ and
j such that (i, j) ∈ Ē (j could belong to C). From (ii) and Proposition 3, it follows that for any
complete subgraph in GO there is an identifying sequence. Then, from Lemma 1, DC̄ is full
column rank. The matrix D(β) can be so written:

D(β) =
[

DC 0 0
B1 DC̄ 0
B2 B3 P

]
,

where B1, B2 and B3 are non-zero matrix (we omit the dimension for brevity), while P is as in
Proposition 4. Therefore, D(β) is full rank everywhere.

To prove the necessity, it is enough to note that D(β) is full rank only if the following matrices
DC , DC̄ and P are full rank. If DC is full rank, then by Proposition 1, condition (i) holds. From
Lemma 1, DC̄ and P full rank imply that for any clique of GO there is a generalized identifying
sequence, and so by Proposition 3, condition (ii) holds.
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Subset where identifiability breaks down in models with no m-clique in
ḠO , m ≥ 3, and GO is connected

If there is no m-clique, m ≥ 3, then for any triple of nodes i1, i2, i3 there is at least an edge
between two of them missing in ḠO . Consider the sub-matrix D3(β) of D(β) related to
the rows {(0,0,0), (0,1,0), (1,1,0), (1,0,0), (0,0,1), (0,1,1), (1,1,1), (1,0,1)} and columns
μ,β0, βir , β{0,ir }, r = 1, . . . ,3. Then the matrix D3(β) has the following structure:

D3(β) =
[

D2(β) 04×2
D2(β) P4×2

]
,

where 04×2 is a zero sub-matrix and

D2(β) =
⎡
⎢⎣

a11 a12 0 0 0 0
a21 a22 0 0 a21 a22
a31 a32 a31 a32 a31 a32
a41 a42 a41 a42 0 0

⎤
⎥⎦ .

Note that the generic elements of the matrix D2(β) are

ai1 = eμ+∑
I⊆Ii

δ(I )βI
(
1 + eβ0+∑

I⊆Ii
δ(I )β{0,I }),

ai2 = eμ+β0+∑
I⊆Ii

δ(I )β{0,I }

with Ii the set of random variables taking value 1 in row i and δ(I ) = 1 if I is complete
in GO . The matrix D2(β) is not full rank in the subspace of � where all the 4 × 4 square
sub-matrix of D2(β) are not full rank. Analogously, the matrix P4×2 is not full rank for β in∑

I⊆Ii ,I �⊆Ij
δ(I )β{0,I } = 0 for all i, j ∈ {5, . . . ,8}, with j > i.

Proof of Theorem 3

First, assume that all the variables are binary except the A1 variable which has three levels.
Partition β into three subsets βa = {μ, β0}, βb corresponding to the non-zero interaction terms
of any order for value in {0,1} of the observable random variables and βc containing all other
parameters. After ordering in a way such that the A1 variable is running the slowest, the D(β)

matrix has the following structure:

D(β) =
[

D(βa) D(βb) 02n×|βc|
D∗(βa) 02(n−1)×|βb| D∗(βc)

]
,

where [D(βa) | D(βb)] is the sub-matrix of the derivatives of βa and βb . It has full rank if con-
ditions (i) and (ii) of Theorem 2 hold. Note that by construction, D∗(βc) has a similar structure
of the sub-matrix of D(βb) formed by the last 2(n−1) rows and all columns. Therefore, D∗(βc)

is full rank if conditions (i) and (ii) of Theorem 2 hold.
To see the necessity note that D(βb) is full rank only if Theorem 2 is verified. Proof of the

theorem for A1 having lv levels follows straightforwardly. By a similar argument, extension to a
generic number of levels of the Ai variables, i ∈ O , follows.
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Appendix B: Proof of Theorem 1

Note that T1 is the set of observable variables such that (i,O) /∈ E. We first focus on models with
only binary variables. Let T2 ⊆ S \ {0} be the set of observable variables such that (i, j) ∈ E,
i ∈ T1, j ∈ T2. If T1 or T2 is empty the proof is trivial.

To start with, we assume |T1| = 1. Partition β into the subsets βd containing all the non-zero
interaction terms among the variables in S and βe containing all the other elements. The non-
zero interaction terms among the latent variable and the observable random variables are in βd .
The matrix D(β) has the following structure:

D(β) =
[

D(βd) 02|S|−1×|βe|
F D(βe)

]
,

D(βd) and D(βe) are the derivative sub-matrices for the corresponding elements. The sub-matrix
D(βe) is full rank because it corresponds to the rank of the design matrix of the model for T1 ∪T2.
The conclusion follows easily from the block-diagonality of the matrix and from the fact that by
Theorem 3 D(βd) has full rank if and only if (i) and (ii) hold. Extension to a generic number of
variables in T1 follows after noting that the matrix D(β) is so built:

D(β) =
[

D(βd) 02|S|−1×|βe|
F ∗ D(βe)

]
,

where D(βe) is the derivative sub-matrix for the vector βe defined as in the previous step. D(βd)

is the derivative sub-matrix for the vector βd = β \ βe; F ∗ is a sub-matrix with the same num-
ber of rows as D(βe). The same considerations as in the previous case hold. Extension to a
generic number of levels of the Ai variables, i ∈ O , follows by induction, as done in the proof of
Theorem 3.

Acknowledgements

We are grateful to Antonio Forcina for writing a set of Matlab routines by which one can easily
check the main results of the paper, as well as for stimulating discussions and comments. We
also thank the referees for their very detailed and constructive criticism.

References

[1] Allman, E.S., Matias, C. and Rhodes, J.A. (2009). Identifiability of parameters in latent structure
models with many observed variables. Ann. Statist. 37 3099–3132. MR2549554

[2] Darroch, J.N. and Speed, T.P. (1983). Additive and multiplicative models and interactions. Ann. Statist.
11 724–738. MR0707924

[3] Drton, M. (2009). Likelihood ratio tests and singularities. Ann. Statist. 37 979–1012. MR2502658
[4] Drton, M., Foygel, R. and Sullivant, S. (2011). Global identifiability of linear structural equation

models. Ann. Statist. 39 865–886. MR2816341

http://www.ams.org/mathscinet-getitem?mr=2549554
http://www.ams.org/mathscinet-getitem?mr=0707924
http://www.ams.org/mathscinet-getitem?mr=2502658
http://www.ams.org/mathscinet-getitem?mr=2816341


Identification of discrete graphical models with hidden nodes 1937

[5] Gilula, Z. (1983). Latent conditional independence in two-way contingency tables: A diagnostic ap-
proach. British J. Math. Statist. Psych. 36 114–122. MR0785434

[6] Goodman, L.A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable
models. Biometrika 61 215–231. MR0370936

[7] Lauritzen, S.L. (1996). Graphical Models. Oxford Statistical Science Series 17. New York: Oxford
Univ. Press. MR1419991

[8] McHugh, R.B. (1956). Efficient estimation and local identification in latent class analysis. Psychome-
trika 21 331–347. MR0082427

[9] Pachter, L. and Sturmfels, B., eds. (2005). Algebraic Statistics for Computational Biology. New York:
Cambridge Univ. Press. MR2205865

[10] Stanghellini, E. (1997). Identification of a single-factor model using graphical Gaussian rules.
Biometrika 84 241–244.

[11] Vicard, P. (2000). On the identification of a single-factor model with correlated residuals. Biometrika
87 199–205. MR1766840

Received March 2011 and revised February 2012

http://www.ams.org/mathscinet-getitem?mr=0785434
http://www.ams.org/mathscinet-getitem?mr=0370936
http://www.ams.org/mathscinet-getitem?mr=1419991
http://www.ams.org/mathscinet-getitem?mr=0082427
http://www.ams.org/mathscinet-getitem?mr=2205865
http://www.ams.org/mathscinet-getitem?mr=1766840

	Introduction
	Discrete undirected graphical model
	Main results
	Local identification with one binary variable
	Concluding remarks
	Appendix A: Proofs of derivations in Section 4
	Algorithm for reordering D(beta)
	Proof of Lemma 1
	Proof of Theorem 2
	Subset where identifiability breaks down in models with no m-clique in GO, m >=3, and GO is connected
	Proof of Theorem 3

	Appendix B: Proof of Theorem 1
	Acknowledgements
	References

